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Calculation of forces and moments in vortex methods
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Abstract. An alternative formulation for the calculation of forces and moments acting on a body in a three-
dimensional unsteady viscous incompressible flow field is derived. The formulation is especially useful when the
Navier-Stokes equations are solved in vorticity formulation.

1. Introduction

Vortex methods for the description of viscous incompressible flows can provide an interest-
ing alternative to the widely-used primitive-variable methods. Vortex methods determine the
flow field by calculating the evolution of the vorticity field using a Lagrangian method. They
are frequently applied to the calculation of vortex shedding from bluff bodies, see for
instance van Qortmerssen et al. [1] and Stansby et al. [2]. In two dimensions vortex methods
are relatively easy to apply, but a more extensive use is hindered by problems related to the
accuracy, numerical efficiency and the extension to three dimensions of these methods. All
these aspects are currently subject to intensive research, but one aspect that is especially
important for engineering applications, the calculation of forces and moments, has received
only limited attention. The problems with the calculation of forces and moments originate
from the fact that in a vorticity formulation the pressure is eliminated, which is essential
information for the calculation of forces and moments. The purpose of this article therefore
is to discuss an alternative method to compute forces and moments without requiring the
calculation of the pressure and more suited to vortex methods than the formulations used
for primitive variable algorithms. Due to the fact that the algorithm for the computation of
forces and moments in a viscous fluid is strongly related to the vortex method, first some
basic aspects of these methods will be discussed shortly.

Vortex methods for viscous flows solve the viscous vorticity transport equation, which is
obtained by taking the curl of the Navier-Stokes equations. They are based on the observa-
tion that large eddies outside the close vicinity of the wall in a slightly viscous fluid behave
approximately as if the fluid were inviscid. This phenomenon was used by Chorin [3] to
extend the vortex methods for inviscid flows to viscous flows. The simulation of a viscous
flow was accomplished by subsequently calculating for small time intervals the evolution of
the vorticity field neglecting viscosity, followed by giving the vortices a random displace-
ment, with a Gaussian probability density, in order to take care of the effects of viscosity.
This process is completed each time step by the creation of new vorticity at the body surface
in order to satisfy the no-slip condition, because during the inviscid step only the no-flux
condition is satisfied at the body surface. This method initially obtained a lot of criticism,
Milinazzo et al. [4], but Beale et al. [5] demonstrated its validity in an unbounded fluid.
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Recently van der Vegt [6] proved convergence of the random-vortex method to solutions of
the viscous vorticity-transport equation for three-dimensional viscous incompressible flows
around bodies without sharp edges, using a variational method.

The vortex method for viscous flows thus strongly depends on an efficient algorithm for
inviscid flows. In the first attempts to use vortex methods for the solution of two-dimensional
inviscid flows the vorticity field was represented by a set of point vortices which are
transported with the local fluid velocity. Although the point-vortex method exactly satisfies
the inviscid vorticity transport equation the method is not valid for a continuous vorticity
field. When two vortices come close together the numerical errors grow rapidly due to the
singular behaviour of the induced velocities, finally resulting in chaotic motions of the
vortices. The way to solve this problem is to represent the vorticity field by a finite number
of vortices in which the vorticity is spread out over some smooth kernel with compact
support, resulting in the vortex-blob method. This method has been subject of extensive
theoretical research. Convergence of the vortex-blob method to solutions of the inviscid
vorticity transport equation has been proved in both two and three dimensions by for
instance Beale et al. [7-8] and Anderson et al. [9]. An additional advantage of the vortex-blob
method is that the extension to three dimensions presents no special problems compared to
the three-dimensional counterpart of the point-vortex method namely the vortex-line method.
A numerical algorithm for the calculation of the three-dimensional flow field around a
circular cylinder, with the correct incorporation of the vortex-stretching contribution, is
presented by van der Vegt [6].

A second problem related to vortex methods is their low numerical efficiency. In order to
compute the evolution of the vorticity field the mutually-induced velocities of the vortices
must be calculated. In an unbounded fluid these induced velocities can be calculated using
Biot and Savart’s law of interaction. This computation has, however, an operation count
proportional to the square of the number of point vortices or vortex blobs. This severely
limits the maximum attainable number of vortices for a realistic flow simulation. There are
two methods to surpass this limit: either the use of multiprocessors and multipole expansions
as done by Baden [10] and Greengard et al. [11], or the use of fast algorithms for the solution
of the Poisson equation using a grid fixed in space, as done for instance by Couet et al. [12]
for three-dimensional mixing layers and van der Vegt [6] for both two- and three-dimensional
flows around circular cylinders.

The essential features of a vortex model now can be summarised as follows: Let R(r’, ¢, ¢,)
be an invertible continuous differentiable flow map with a Jacobian determinant unity. This
flow map represents the transformation of the initial fluid volume €, at time ¢, to the fluid
volume £ at time ¢. Then the position r at time ¢ of a fluid particle initially at ¥’ is given by
the relation

r = R, 1, 1,). (1.1)

The flow map R must have a Jacobian determinant unity due to the incompressibility
constraint, see Serrin {13]. It represents the Lagrangian coordinate system, while the fluid-
particle velocity is related to the curl of a divergence-free vector stream function A, represent-
ing the Eulerian velocity field:

R = V, x AR, 1. (1.2)
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The vector stream function A is related to the vorticity field by the Poisson equation

VA = —of, 1) (1.3)

"wo(r’) : Vr’R(r,’ L to)s (14)

where the right-hand sides of this expression represent the relation between the vorticity field
in the Eulerian and Lagrangian systems. When this set of equations is supplied with an initial
vorticity field w,, satisfying the boundary condition n* @, = 0 at €}, together with the
no-flux condition n+(V x A) = 0 at the body surface, with n the unit outward normal
vector, then these equations are equivalent with the inviscid vorticity-transport equation.
This set of equations was put in a variational formulation using Lagrangian and Hamiltonian
field theory by van der Vegt [6], which is a useful tool to obtain a numerical algorithm.
The vorticity field in a vortex-blob method now is represented by

o*r 1) = ) jﬂf,(r —s —1)o, f) ds, (1.5)

where the function f,, the vorticity distribution in the vortex blob, is common to all vortices
and o represents the core radius of a vortex with position r;.

The vortex method for a viscous flow can now be constructed using the algorithm for
inviscid flow as discussed earlier. A precise formulation in terms of a product algorithm can
be found in van der Vegt [6]. However, the essential features of a vortex method which are
necessary for the calculation of forces and moments are that any vortex method must solve
a Poisson equation and represents the vorticity field as a finite sum of vortices with a compact
support.

As already mentioned, the problems with the calculation of forces and moments when
using vortex methods originate from the fact that the pressure is eliminated in a vorticity
formulation. In order to be able to determine the forces and moments in this case some
authors, for instance Graham [14] and Deffenbaugh et al. [15], used the so-called Blasius
equation. The use of the Blasius equation is, however, not valid for viscous flows and the
method can only be applied in two dimensions. Another approach is to obtain the pressure
directly from an integration of the tangential derivative of the pressure at the body surface,
which in two dimensions is given by

ap Jw
> = —ha (1.6)

with s the coordinate along the surface and u the viscosity coefficient. This method was used,
for instance, by Chorin [3] and Stansby et al. [2]. In order to obtain the forces and moments
one has to integrate twice, first to obtain the pressure, next to obtain forces and moments.
Numerical experiments, performed by Stansby et al. [2], however, showed a strong depen-
dency on the arbitrary initial position of the integration which should not exist.

It is, however, possible to perform this integration analytically and to relate the forces and
moments directly to the vorticity and velocity field, instead of an integral of the normal
derivative of the vorticity field. In the next part of this article this method will be discussed
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together with its implementation in vortex methods. The alternative method to compute
forces and moments is based on a projection of the Navier-Stokes equations on a space
spanned by a set of functions satisfying Laplace’s equation and choosing appropriate bound-
ary conditions for these functions.

2. Calculation of forces and moments in a viscous incompressible fluid using vortex methods

The algorithm for the calculation of forces and moments suited to vortex methods is derived
directly from the Navier-Stokes equations in primitive-variable formulation. However, prior
to the derivation of an expression for the integral of the pressure at the body surface, first
some remarks are necessary about the velocity and pressure field. The total velocity field u*
must satisfy, apart from the Navier-Stokes equations, the incompressibility constraint
div u* = 0. In addition it also has to approach a uniform velocity field U(¢) at great distance
from a body together with the no-slip condition u* = u, at the body surface S < dQ, with
u,, the velocity of the body surface S and Q the fluid domain. In order to ease the calculations
the velocity and pressure fields u* and p* are separated into two components,

u*{m, ) = ulr, ) + UQ), .1)

pr, ) + P(), 2.2)

p*(r, 1)

with U(#) and P(r) the velocity and pressure field of the undisturbed flow and u and p the
disturbance velocity and pressure field. It is assumed that the fields u and Vp are both
elements of L*(Q), with L?*(Q) the Hilbert space with inner product {fig> = [, f-g dQ.

The equations for the disturbance velocity and pressure field then are obtained by
subtracting the equations for the undisturbed field from the Navier-Stokes equations and
using the decomposition given by equations (2.1) and (2.2):

0 1

a—l:+(u+U)-Vu =~V =V X (V x ) .3)
with ¢ the density and v the kinematic viscosity of the fluid. The no-slip condition for the
disturbance velocity field at the body surface S then changes into

u = u, — U@, 2.4)

while at great distance from the body both u and Vp must approach a zero value.

An expression for the integral of the pressure at the body surface S now can be obtained
by defining an additional set of test functions n belonging to the vector space L? and
satisfying Laplace’s equation. They form the subspace H, of L? defined as

H = {veL*lv = Vi, V5 = 0}. (2.5)

The basic step in the elimination of the pressure from the formulation of forces and moments
acting on a body now consists of projecting the space of divergence-free vector fields, the
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Hilbert space H, a subspace of L2, onto the subspace H, using the standard L? inner product.
Quartapelle et al. [16] used this approach to derive some kind of equivalent formulation, but
their result has some serious deficiencies, namely:

(i) In their formulation they end up with a volume integral, | u - Vu d¥, which is difficult
to evaluate and requires the determination of the gradient of the velocity field which is
not known when the Navier-Stokes equations are solved with a Lagrangian vortex
method.

(ii) The contribution of the fluid acceleration to the forces and moments requires a cumber-
some evaluation of an integral at a surface tending to infinity.

The algorithm presented in this article overcomes these problems if the flow field is deter-
mined using a vortex method.

In the next part of this section, first an expression for the integral of the pressure at the
surface of a body in terms of the velocity and vorticity field will be derived which then will
be used to eliminate the pressure from the formulation of the forces and moments.

The projection of the momentum equations, equation (2.3), onto the space H, using the
standard inner product of the Hilbert space L? results in the following volume integral:

1 du
- EJQ(:) Vp:VndV = Jn(p) {E + (u+ U)-Vu + VVXWXU)} - Vn dv. (2.6)

Here Q(¢) is the time-dependent fluid domain with respect to an inertial coordinate system.
With some well-known vector relations this expression can be simplified using the fact that
the velocity field is solenoidal and the function # satisfies the Laplace equation:

ou

1
— EJ‘Q(I) V- (pVn)dV = Jﬁ(t) {V '['l 5 + v x Vp) + {((u + U)-(u + U))Vn:l

—((u+U) x w- Vn} dv. (2.7)

The volume integrals of this inner product can be partly reduced by Gauss’ theorem into
surface integrals on S, the body surface, and S, a sphere tending to infinity with its centre,
the centre of gravity of the body. The surface .S, is continually moving with the body, so the
volume Q between S and S, is constant (see Fig. 1).

Gauss’ theorem applied to the volume Q now yields

1 Ju
_E Susmpn-VndS = lsos, {n(n-a) 4+ v(n x @)+ Vn

+ 2w+ U+ U)n- Vﬂ)} ds

+ jﬂ ((u + U) x o) VpdV; (2.8)

here n is the unit normal vector pointing into Q.
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Fig. 1. Definition of geometry of the surfaces S and S, .

The expression for the disturbance pressure integrated at the body surface in terms of the
velocity-vorticity field and an additional field #, equation (2.8), now is used to derive an
alternative formulation for forces and moments acting on a body in a viscous incompressible
flow.

The force acting on a body in a viscous flow field is usually defined as

F = —[ rds, (2.9)

with ¢ the Cauchy stress vector; see for instance Serrin [13]. By a result obtained by Berker,
see Serrin [13], the stress vector at a fixed wall is equal to

t = —p*n — u(n X W), (2.10)
with u the viscosity coefficient, n the unit outward normal at S and @ = curl u* the

vorticity field. Combining these results the force acting on a body in a viscous flow becomes
equal to

F = [ {p*n + u@ x o)} ds. 2.11)

After substitution of the decomposition into an undisturbed flow field and a disturbance flow
field, equations (2.1) and (2.2), we obtain

F = [{(P+pn+un x 0)}ds, (2.12)

using the assumption that the undisturbed flow field is irrotational. The first integral
can be evaluated using Gauss’ identity and the Navier—Stokes equations for the undisturbed
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field:

dU
[ Pnds = jﬂEVPdV = —g4, Vol B (2.13)

with Q; = Vol B the volume of the body.
Thus the force acting on a body is equal to

F = Uyl B + [ {pn + u( x o)} ds. (2.14)

=
The surface integral of the disturbance pressure now can be eliminated using the inner
product, equation (2.8), and imposing additional boundary conditions on the function #. To
obtain time-independent boundary conditions for the function #, the disturbance flow field
is considered with respect to a body-fixed Cartesian coordinate system with unit vectors
(&, &;, &;) with respect to the centre of gravity of the body, instead of an inertial coordinate
system with unit vectors (e,, e,, €,). In the body-fixed coordinate system the surfaces S and
S, and the volume Q are independent of time.

The component in the direction of the unit vector &, of the force caused by the disturbance
flow field is defined as

fi = [({PR + p@ x &)} - & dS. (2.15)

By imposing the following conditions on the function #,,

Vi, = 0 in Q, (2.16)
A-Vi, = —h-8  ats, 2.17)
A-Vi, = 0 at S, (2.18)

the pressure in the formulation of the force can be eliminated using the inner product,
equation (2.8). The force component f; now becomes equal to

L= el {n (n%) +v(@ x @) Vi, + 3@ + 0)- @ + 0))(ﬁ-vm)} ds
+uf (B x 6)-&dS + o[ (@ + 0) x &) Vi, dV; (2.19)

~ refers to variables with respect to the body-fixed coordinate system. Introduction of the
boundary conditions of #; in this equation yields

di

fio= QfsUswﬁx'<ﬁ‘a,>dS+#L(ﬂ x ®)- (VA; + &) dS

+e[ (@ + 0) x &) Vi, dV. (2.20)
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This result was obtained because the contribution of the integral
pl, (@ x @) Vi, dS (2.21)

is zero due to the assumption that the undisturbed flow field U only depends on time and
the asymptotic behaviour of & and V#, for large values of r, the distance from the centre of
gravity.

In addition, the contribution of the integral

1 R R
5 5o, @ + D)@ + )@~ &) dS (2.22)

disappears at S and S, by the boundary condition for #, at S, and the no-slip condition at
the wall, viz.

i+U =1id6, =0 at S. (2.23)
A similar result is valid for the y and Z components of the force, however, with £ replaced
by 7, respectively Z. Combining the various contributions of the undisturbed flow field to the
forces and transforming the latter to the inertial coordinate system we obtain the following
new formulation for the forces in a viscous and incompressible flow field:

F = —oUVol B + ¢B(&, x U—U) — G(g, x %, — &)

+ uT(a,) js ((h x ®)-Vi + (@ x @) dS

+ T(a,) Z fn_ {(a(r, ) + O@) x o*@ — r, 0} Vi dv (2.24)
j 7
with the matrices B and G defined as
B, = [ #AdS, G, = ;[ G — 63)ads, (2.25)

where the indices i, j = {1, 2, 3} refer to the £, y or Zcomponents of the vectors respectively.
Here the vector 4, represents the angular velocity of the body, the vector x, the position of
the centre of gravity of the body and a dot means differentiation with respect to time. The
matrix T (a,) gives the relation between the inertial and body-fixed coordinate systems and
is defined as

(e.- &) (e.-&) (e,-8&)
T(x) = | (e &) (e,-&) (e,-8&) |, (2.26)
(e,° &) (e,-&) (e¢&)
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where the innerproducts are equal to the cosines of the angles between the inertial and
body-fixed coordinate systems, as given by the vector «,. Finally the vectors 4, b and § are
defined as §j = (A, f;, A;)"; b = —f, where the superscript 7 means the transposed of a
vector, and § is a vector from the centre of gravity of the body to its surface S.

In the derivation of equation (2.24) the representation of the vorticity field as a set of
vortex blobs with a compact support is used, as given by equation (1.5). The volume integral
in equation (2.20) then can be transformed into the sum of volume integrals over the small
neighbourhood Q; of the vortex blob with position r;.

The transformation of the integral at the surfaces S and S, of the fluid acceleration, the
first contribution on the right-hand side of equation (2.20), into the more practical integra-
tion at the body surface as shown in equation (2.25) is further discussed in the Appendix.

The expression for the forces on a body in a viscous fluid as given by equation (2.24)
consists of three main contributions, namely forces related to the acceleration of fluid or
body, which do not depend on viscosity, forces due to the viscosity of the fluid and finally
forces caused by the vorticity in the fluid. It is interesting to note that the force on a body
caused by a vortex blob is orthogonal to both the local fluid velocity and vorticity vector.

The derivation of the expression for the moments on a body in a viscous fluid is completely
analogous to the derivation of the forces as discussed in the previous part. The expression
for the moment is directly obtained by changing the vectors # and b into # and b and the
replacement of the first term on the right-hand side of equation (2.24) by oU x I(¢), with
I(¢) the area-moment vector of the body with respect to the centre of gravity at time 7. The
vector f* = (A%, #}’, A2') for the moment must satisfy, analogous to the vector # for the
forces, the Laplace equation (2.16) and the boundary condition (2.18) for each component,
while its boundary condition at the surface S is changed into

n-Vi" = —@ x ) = b (2:27)
The formulations for ¥ and M given so far are non-unique at first sight. Due to the fact that
the functions # only have to satisfy Neumann boundary conditions at the surfaces S and S,
the functions # are undetermined up to arbitrary constants 7,,,. It can be shown that these
constants do not contribute to the forces and moments. In all but the inertia contribution
only the gradient of the functions # is used to compute the forces and moments, thus
removing the constants. The constants in the inertial contribution disappear using Gauss’
identity:

. o . o
stsw Moco (ﬂ . 5_t> a5 = e L) divady = 0 (2.28)

and are zero because of the continuity equation.
The practical implementation of the calculation of forces and moments using equation
(2.24) now consists of three steps:

(i) The calculation of the velocity and vorticity field using a vortex method as discussed in
the introduction. Numerical algorithms for both two- and three-dimensional flows can
be found for instance in van der Vegt [6].

(i) The determination of the vectors # and #* for the forces and moments respectively. Due
to the fact that 4 and #* are defined in a body-fixed coordinate system they have to be
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calculated only once. For simple geometries such as a cylinder or a sphere this can be
done analytically. In the case of bodies of arbitrary shape it is beneficial to use the
algorithm for the solution of the Poisson equation (1.3) which is available in any vortex
method.

In two dimensions one has to determine three functions , respectively #,, f; and 7, related
to the %- and y-component of the force and the Z-component of the moment. Here it is
assumed that the Z-component is orthogonal to the two-dimensional plane. In two dimen-
sions therefore three Laplace equations must be solved. In order to be able to use the algorithm
for the solution of a Poisson equation (1.3), which reduces to a scalar Poisson equation in
two dimensions, it is advisable to transform the Laplace equations for 7 with inhomogeneous
boundary conditions into Poisson equations with homogeneous boundary conditions.
Define the function #; as

fie = ¥ — #HGD + 1 — /% + 77) (2.29)
with the infinitely differentiable function H(x) defined as

Hx = [0 ds/jj: O(s) ds (2.30)
and

—1/(1 — |s]?)), 1,
o) = {CXP( [ —1s), Is] < 231)

0, fs| = 1.

Then H(x) = 0if x < —1and H(x) = lif x > 1. The constant D is chosen such that the
whole body is contained in a circle with diameter D and as centre, the centre of gravity of
the body.

The Laplace equation and boundary conditions for the function #, then are transformed
into a Poisson equation for y:

Vi, = VMBRHGD +1 — J/#£2 + 7)) inQ, (2.32)
n-Vj, = 0 atSus,, (2.33)

with equivalent expressions for |/7j and §¥.

The only modification necessary in the algorithm for the solution of the Poisson equation
used in the vortex method is the change in boundary conditions at the surface S from
n-V x & into n- V{,. The complexity of this change of boundary conditions strongly
depends on the choice of the numerical algorithm used for the solution of the Poisson
equation. In three dimensions it is necessary to determine six functions #, for all three
components of forces and moments. Again it is possible to use the algorithm for the solution
of the vector Poisson equation in the vortex method by defining the vector # as

i =¢ —RHQGD + 1 — |])), (2.34)
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where the constant D is chosen such that the whole body is contained inside the sphere with
diameter D and its centre at the centre of gravity of the body.
The vector § then is obtained by solving the following Poisson equation:

~

Vi = VARHGD +1 —|&]) inQ, (2.35)
n-vy =0 atSu S, (2.36)

with equivalent expressions for the vector /¥, related to the moment.

(iii) The final step in the implementation of the calculation of the forces and moments using
equation (2.24) consists of the numerical evaluation of the integrals at the body surface
S and the volume integrals over the small neighbourhoods of the vortex blobs. The
choice of integration rules should be related to the accuracy of the numerical algorithm
used for the determination of the flow field.

Conclusions

The procedure for the calculation of forces and moments in a viscous fluid described by
primitive variables can be transformed into a method more suited to vortex methods. The
algorithm presents no considerable additional effort because it uses the algorithm for the
solution of a Poisson equation which is a basic element of any vortex method.
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Appendix

Derivation of an expression for the forces and moments due to the acceleration of body or
fluid

In this appendix the transformation of the integral containing the fluid acceleration in
equation (2.20) into an expression more suited for numerical evaluation, as given by
equation (2.24), will be demonstrated. Especially the integration at the surface S, requires
some attention. The integrals containing the acceleration of the fluid are calculated in the
body-fixed coordinate system (&, €;, ;). The normal component of the velocity field & at the

body surface S with respect to the body-fixed coordinate system then is equal to
i-f = —T '(z)U-A, 3.1

using the no-slip condition at S, equation (2.4). Here the matrix T'(a,) gives the relation
between the inertial and body-fixed coordinate system and is defined in equation (2.26).
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y

Fig. 2. Definition of the variables in the inertial and body-fixed coordinate systems.

The vector a, is the rotation axis of the centre of gravity. Here a variable with a ~ always is
defined in the body-fixed coordinate system. Analogously, the normal component of the
velocity field @ at the body surface S, with respect to the body-fixed coordinate system is
given by the relation

i = —A (T @) @), + T-'()%,), (3.2)

using the condition that the disturbance velocity field approaches a zero value at S,. The
vector 2,, is directed from the centre of gravity of the body toward a point p at the surface
S, see Figure 2. The relation for the normal component of the velocity field at S_ can be
further simplified into

i-f = —T ' ()%, i (3.3)
This result is obtained using the relation

T '(@,)T(a,) = —J (3.4)

with the matrix J defined as

0 - d3 dz
J = 6 0 —g
—d4, & 0

and ¢, = (x;, o, ®;) the angular velocity vector.
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The first contribution on the right-hand side of equation (3.2) then disappears because

~

—i- T ()T (@)d, = fi-(& x 1) = 0, (3.5)

because i and 1‘, point in the opposite direction (see Fig. 2).

The expression for the forces and moments due to the fluid acceleration in the body-fixed
coordinate system, as shown in equation (2.20), now can be transformed with the aid of
equations (3.1) and (3.3) into

(. Of o . .. AP A
[sos. P (ﬂ-5> dS = — = (T'(@)V)- [ B dS — 5 (T @)%, [, 04 dS. (3.6)

Here the function # is one of the functions 7, #j; or 7, for the £-component of the force
etc., or one of the functions 7}, # or 7 for the components of the moment.

The integration at the surface .S presents no special problems, but the integration at the
surface S, requires a special treatment, which will be further explained.

The function 7, at a point p at the surface S, can be expressed in terms of the function
fi, and its boundary condition b, at the body surface .S by means of Green’s representation

theorem:

A Ve (o o 1 - (1
i, = Efs (nq (nq-vq)<ﬁ) - bq<ﬁ>> ds,, 3.7)

with the function 5q equal to the right-hand side of equation (2.17), transformed to the
body-fixed coordinate system, and the function R is defined as the distance between the point
%, at the surface S, and §, at the surface S. The representation of 71, by means of Green’s
representation theorem can be further simplified by expanding 1/R and V,(1/R) for large
values of the distance between the points &, and §,.

The integration at the arbitrary surface S, in equation (3.6) then can be transformed into
an integration at the surface S, by assuming that the surface S, is a sphere with an infinitely
large radius and introducing equation (3.7), using the asymptotic expansion of 1/R and
V,(1/R), in equation (3.6) yielding

. 1 . -
jsm a7 ds = — 3 [, @87 — 65 ds. (3.8)

This result is valid for arbitrary three-dimensional bodies. In case of two-dimensional bodies
the same result is obtained, however, with the constant 1/3 replaced by 1/2.

Combining the various contributions for the £, § and Z components the following expres-
sion for the forces due to the acceleration of the fluid or body is obtained:

o . . .
. = ij ? <ﬁ-a> dS = —B(I'U + T7'0U) + G(T'%, + T7'%,),  (3.9)
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with matrices B and G defined as
. e 0 Al
B, = [ A4 dS, G, = 3 [; G, — B,5)) as, (3.10)

where the indices i, j = {1, 2, 3} refer to the %, § or Zcomponents of the vectors respectively.
Here a dot means differentiation with respect to time.

Finally the result as presented in equation (2.24) is obtained by transformation to the
inertial coordinate system, viz.

facc = T(ag)?acc
= B, x U—-U) — G@, x %, — %), (3.11)

where the relation, equation (3.4), for the transformation matrix is used.
Analogous expressions are obtained for the moment by replacing the vectors 4 and b by
#* and b™ respectively.
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